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The classical and quantum dynamics of a periodically driven anharmonic oscillator is studied. For
a monochromatic field it is demonstrated that quantum mechanics imposes only weak limitations on
the classical chaotic spreading, which are destroyed by introducing weak random noise in the field
amplitude or when the time-reversal symmetry of the system is broken.
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Our numerical studies of the dynamics of the continu-
ously driven anharmonic oscillator show a behavior which
is markedly different from many systems studied so far
[1-6]. For this particular system it will be demonstrated
that there is an appreciably long time scale where the
quantal survival probability is twice the classical one. Its
origin is similar to weak localization in disordered sys-
tems [4,6]. From the arguments presented it is expected
that this is a generic phenomenon in chaotic systems. It
holds for times shorter than the asymptotic time scale,
which is required to resolve the individual levels. On
the latter time scale the survival probability is enhanced
by a different mechanism [7]. The weak localization is a
dynamical phase effect and is not reflected in static calcu-
lations such as that of the Husimi distribution functions
[5] . The model studied in the present work is a periodi-
cally driven quartic oscillator defined by the Hamiltonian

H(t) = Eprin + bz? — foz cos(0t), (1)

which is a special case of the classical Duffing oscillator
and was shown to support a large bounded chaotic zone
[8,5]. As shown in Fig.1 for the parameter values m=1,
b=1/4, fo =1/2, and Q = 1, the iterates of a single
classical trajectory fill a bounded chaotic region in the
Poincaré section of phase space. Such a trajectory gen-
erates a classical density in coordinate space [9], which
is shown in Fig. 1.

The quantum quasienergy states for Hamiltonian (1)
can be clearly classified into localized and extended
states, where the latter are related to the classically
chaotic phase-space region [5]. This suggests a definition
of an average quantum “chaotic” probability density at
z given by

P@) = 5= % [Talep)dp, )

where I',(z, p) is the Husimi distribution function of the
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ath quasienergy state and the sum runs over all Nex
extended states. The quasienergy states were obtained
by propagating the time-evolution matrix U(0,t) by the
Adams-Moulton predictor-corrector method in the basis-
set representation of 360 variational eigenfunctions of the
zero-field Hamiltonian, where fo =0. The quasienergy
states are given by

Yoz, t) = e iwat ba(z,t) (3)

0.6 - -
0.4 E
= I J

o
0.2 -

0
2 3
X
FIG. 1. The inset shows a Poincaré section of the classi-

cal chaotic region of phase space in the positive momentum
half plane at t=nT (n=0,1,2,...). All points result from
a single classical trajectory. Quantum (%=0.015) probability
densities P(z) (thick curve), defined in Eq. (2), are com-
pared with the classical distribution computed from a single
trajectory (dots). The thin curve is obtained by Gaussian
smoothing of the classical histogram.
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with @u(x,t + T) = ¢olz,t), where €, = hw, are
the quasienergies. The time-periodic wave functions
¢a(z,0)=¢4(z,nT) are associated with the eigenvalues
Ao =€~ =T and eigenfunctions of the time evolution ma-
trix at t=T. It is easy to show that the quantum proba-
bility density P(z) given by Eq. (2) is equal to the Gaus-
sian average of the quasienergy solutions. The results
presented in Fig.1 show remarkable agreement between
quantum (k = 0.015) and classical probability densities
and definitely demonstrate that the strong localization
of the Husimi distribution in the classical chaotic phase
space region (see Fig. 4 in Ref. [5] ) is not a quantum phe-
nomenon and does not provide an indication to quantum
effects on classical chaotic dynamics.

In order to study classical versus quantum dynam-
ics we compared the classical autocorrelation func-
tion Sci(z,p,t) and the quantum survival probabilities
Sqm(z, p, t) given by

Sa(z,p,t) =h//po(rc’,p’)p:(x’,p’) dz'dp,
(4)
2
Sam(®,p,8) = |(@(t) |06)| |

where ®(z/,t) is the time-evolved Gaussian wave function
O (z') = ®(2’,0) and pi(x’,p’) is the time-evolved clas-
sical phase-space density starting from an initial Gaus-
sian ensemble po(z’,p’), sampled by 10® normally dis-
tributed phase-space points with center (z,p) and width
o = y/h/2. The corresponding quantum-mechanical
counterpart is a Gaussian minimum-uncertainty wave
packet and the corresponding survival probability is

Sam(@,p,t=nT) = | SN2 [(@algalO)’| - (®)

Note that Sqm can be precisely written in the form of
Sq in (5) when using the quantum Wigner phase-space
densities.

In the absence of symmetries the time average of the
quantum survival probability is

Sam(@,p) = Y |(@c16a(0))

B

(6)

The ratio between the quantum and classical survival
probability is defined by

Sqm (33, b, t)

R(%Pa t) = Scl(xyp, t) I}

(7

and similarly the ratio between the time-averaged sur-
vival probabilities is defined by R(z, p). To remove short-
time fluctuations S(z, p,t) is averaged over 2k + 1 peri-

ods leading to (S)x(n) = sy E;:L:_k S(z,p,5T) and
similarly Rg(n) is defined as the ratio between (Sqm)x
and (Sq)k. In our calculations k£ = 15 is used. The
smoothed quantum survival probabilities presented in
Fig. 2(a) exhibit the suppression of the spreading gen-
erated by chaos. The long-time quantum localization for

which R(0,0) =~ 2.8 is due to quantum interferences. A
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FIG. 2. Classical and quantum survival probabilities S at
t=nT (T =2r) obtained for an initial Gaussian distribution
centered in the chaotic region at z=p=0. (a) The locally time
averaged quantum survival probability (S), as a function of
t = nT shows an enhanced survival probability. The classical
results are denoted by x. (b) Same as (a) but under the
influence of 10% random noise in the field amplitude.

possible explanation was given by Heller [7]. We shall
come to this point later in the discussion of the dynam-
ics in intermediate-time intervals. We argue that the
dynamical quantum limitation is a pure phase effect. In-
deed, by introducing 10% of random noise in the field
amplitude, taking fo randomly distributed in the inter-
val [0.45,0.5], all phase interference effects are destroyed
and a remarkable agreement between classical and quan-
tum dynamics is observed [see Fig. 2(b)]. This could im-
ply that under similar situations in experimental mea-
surements the presence of random noise in the field in-
tensity may provide a much closer agreement between
quantum and classical dynamics than in the absence of
noise. Neither weak nor strong quantum suppression of
chaos may be observed. Note that in the random field
calculations we could not make use of the Floquet theo-
rem and S(z, p, t) was obtained by direct time-dependent
propagation rather than by Eq. (5).

For small values of h there is a regime where Sqm can be
calculated semiclassically. The semiclassical propagator
between two points (z’,p’) and (z”,p”) in phase space
takes the form

K(',p',z",p",t)
=Y A, (a,p,a”,p t) e WA= PO/ (g
Y

where the sum is taken over classical paths « connecting
these points in time ¢. The action W, is the integral
of the Lagrangian along the path. The survival proba-
bility is Sqm(z,p,t) = ¥ * |K(z/,p',z",p",t)|*, where

the sum ) * is over classical paths with initial and fi-



1648

nal points (z/,p’) and (z”,p”) in the vicinity of (z,p).
The size of this vicinity is that of the initial wave packet,
namely of the order . It represents semiclassically the
overlap of the initial wave packet with one that is evolved
to time ¢. For chaotic systems with no symmetries the
actions of different paths are unrelated and the inter-
ference term in the sum vanishes because of destructive
interference, resulting from the pseudorandom phase fac-
tors. Consequently

/7// 2
Sam(z,p,t) =) " Y Ay, 2", 0", )]
Y

= Cl(xapyt) . (9)

These arguments do not hold if there are symmetries
that relate various paths. For example, the Hamilto-
nian (1) satisfies time-reversal symmetry. Therefore, for
each path starting in the vicinity of a point with zero
momentum (p = 0) there is a time-reversed path that
starts in this vicinity. The initial momenta of these two
paths are opposite and therefore for this case each path
corresponds to a time reversed path with identical val-
ues of A, and W, . Consequently for Hamiltonians with
reversal symmetry [such as (1)] we have

Sam(@:p,t) =2 " A, p,2",p", )"
=25a(z,p,t). (10)

If the time-reversal symmetry of the Hamiltonian is bro-
ken, Eq. (9) also holds for p=0.

This argument, which is semiclassical in nature, breaks
down after some time, because of the spreading of wave
packets. This time cannot be longer than the time it
takes to resolve the quasienergies. In what follows it
will be demonstrated that there is an appreciable regime
where these arguments hold. In particular it is found
that time-reversal symmetry enhances localization. This
enhancement is manifested by the fact that the quantal
survival probability is larger than the classical one by a
factor of 2. It is of the same origin as the weak localiza-
tion effects in disordered solids [4]. Related effects were
found for the kicked rotor [10] and for scattering systems
[11].

In the absence of any symmetry in our model Hamil-
tonian (including time-reversal symmetry) the integral
of the phase factor vanishes due to the strong “ran-
dom” oscillations of W . In such a case one has, for an
intermediate-time interval (50 cycles in the case studied
here), no quantum enhancement of the classical chaotic
survival probability and R(z, p,t)~1, as shown in Fig. 3.
After t >50T the discretization of the system is resolved
and an oscillation is observed. The period of oscillation
is approximately 1007 and its inverse is of the order
of the quasienergy spacing, which in turn is associated
with the number of about 100 quantum states supported
by the chaotic region (see Fig.1). It should be stressed
that the degree of quantum and classical correspondence
for t <5071 varies strongly, depending on the location of
the initial Gaussian wave packet and the nature of the
classical trajectories.

If, for example, it is centered on classical trajecto-
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FIG. 3. The ratio between the short-time averaged quan-

tum and classical survival probabilities Rx(n) as function of
time t=nT is shown for two Gaussian distributions centered
initially at (a) (z,p)=(0.5,—0.3) and (b) (0.75,0) in the clas-
sically chaotic region (see Fig.1). R stands for the global
time-averaged value and the arrows indicate the value of R
obtained during the first 50 optical cycles before the discrete-
ness of the quasienergy spectrum is resolved. (a) No quantal
suppression (Rr =~ 1) of the chaotic dynamics is observed in
contrast to (b), where the initial momentum is p = 0, yielding
a ratio of Rg~2.

ries filling uniformly the entire bounded chaotic region
at a time which is considerably smaller than 157, then
the semiclassical arguments presented above do not hold.
The ratio of R(z,p,t) = 1 is obtained if it takes more
than 15 optical cycles for the classical Gaussian distri-
bution to fill up uniformly the bounded chaotic region.
The contributions from the cross terms v # v’ in cal-
culating Sqym(z,p,t) from Eq. (8) vanish provided that
there is no time-reversal symmetry. As discussed above,
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FIG. 4. Short-time time averaged quantum and classical
survival probabilities obtained for the model Hamiltonian (11)
with no time-reversal symmetry. The initial Gaussian distri-
bution was centered at z=p=0.
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when the initial wave packet is centered at p=0, we find
R(z,p = 0,t) =2 due to the time-reversal symmetry,
whereas R(z,p#0,t)=1.

The results presented in Fig.3 confirm this analysis.
During the first 50 optical cycles wave packets located
initially in the chaotic region around (z,p) = (0.75,0)
lead to a value of Ry =2 [see Fig. 3(b)], whereas for a
wave packet located at p # 0 [see Fig. 3(a)] the expected
value of R =1 is obtained. The initial locations of the
wave packet were selected on the basis of classical tra-
jectory calculations showing that ensembles of Gaussian-
distributed points centered at (0.75,0) and (0.5,—0.3)
spread relatively slowly in time; thereby one would ex-
pect to avoid destruction of the wave packets during the
intermediate-time scale.

The wave-mechanical enhancement in systems with
time-reversal symmetry was discussed recently by Doron,
Smilansky, and Frenkel [11], who suggested to destroy
the time-reversal enhancement by introducing a strong
enough magnetic field. Another possibility suggested

here is to design a shape of the time-dependent field
which is not time-reversal invariant, e.g.,

4

T

2
H(t)=%+ (cost+\/§cos2t+\/§sint).

(11)

V6

Indeed, the results presented in Fig. 4 for an initial Gaus-
sian distribution centered at x = p = 0 in the classi-
cal chaotic phase space region show that R, = 1 (i.e.,
Sci = Sgm) during the first 40 optical cycles before the
discreteness of the quasienergy spectrum is resolved.

Weak localization and its annihilation due to a ran-
dom noise or by a specially shaped amplitude of the laser
pulse can be experimentally observed in the rotational
spectrum of diatomic molecules such as CsI under the
influence of electromagnetic fields for which the chaotic
phase space is bounded as in the periodically driven an-
harmonic oscillator discussed above.
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